Emelda Orakwue

Reservoir characterization of West Waha and Worsham-Bayer Fields

Southeastern Delaware Basin, West Texas Using integrated data source

Master's Thesis
YOUR KNOWLEDGE HAS VALUE

- We will publish your bachelor's and master's thesis, essays and papers
- Your own eBook and book - sold worldwide in all relevant shops
- Earn money with each sale

Upload your text at www.GRIN.com and publish for free
RESERVOIR CHARACTERIZATION OF WEST WAHA AND WORSHAM-
BAYER FIELDS, SOUTHEASTERN DELAWARE BASIN, WEST TEXAS
USING INTEGRATED DATA SOURCE

EMELDA OBIANUJU ORAKWUE

2013
RESERVOIR CHARACTERIZATION OF WEST WAHA AND WORSHAM-BAYER FIELDS, SOUTHEASTERN DELAWARE BASIN, WEST TEXAS USING INTEGRATED DATA SOURCE

BY

EMELDA OBIANUJU ORAKWUE
Registration Number: 140532
B.SC. GEOLOGY (NAU-Awka)

A PROJECT SUBMITTED TO DEPARTMENT OF GEOLOGY, FACULTY OF SCIENCE, UNIVERSITY OF IBADAN, NIGERIA IN PARTIAL FULFILLMENT FOR THE AWARD OF MASTER OF SCIENCE (M.SC.) DEGREE IN PETROLEUM GEOLOGY/SEDIMENTOLOGY

2013
ABSTRACT

West Waha and Worsham-Bayer fields are located in the Southeastern Delaware Basin, West Texas. For several decades, these fields have been experiencing problem of low natural gas recovery in contrast to their large estimated reserves. This study involved the integration of interpreted three data sets namely; 10 well logs, 20-sq-miles 3D seismic and production data. The principal objectives for this study were to determine the impact of thin-beds on reservoir petrophysical analysis and to assess the impact of estimated recoverable reserve on the interpreted reservoirs (R1 [Lower Ordovician Ellenburger group], R2 [Silurian Fusselman formation], R3 [Devonian Thirtyone Formation] and R4 [Undifferentiated Mississippian Limestone].

Reservoir characterization method employed were: well log correlation, petrophysical analysis to calculate porosity and Movable Hydrocarbon Index (MHI), reservoir attribute analysis for thickness estimation, seismic-to-well ties to detect the reservoirs of interest, fault mapping, 3D seismic interpretation, generation of time-depth structure maps for prospect mapping, volumetric analysis for recoverable reserve estimation and production record interpretation.

Well log correlation revealed complex thrust faulting, structural rotation and left-lateral strike-slip which serves as major traps in some areas of the fields. The reservoirs were thickening to Northeastern direction towards Texas arch and thinning Northwestern and the log motifs depict carbonate depositional environment type. The mean porosities for R1, R2, R3 and R4 reservoirs are 23.7%, 16.3%, 26.1% and 26.0% respectively, while the fields' mean porosity value is 23.1% showing excellent porosity value for natural gas flow. Wells 29, 36, 37 and 38 have MHI of >20%. R1 reservoir had the highest thickness value (146 ft) at well log 29. F1 and F2 are major faults and F3, F4, F5, F6, F7 and F8 and F9 are minor faults. F3, F2, F4, F5, F6, F7 and F8 dip north, while F1, F3 and F9 dip south. The total Gas in place (BScf) and...
the total Recoverable reserve (Tcf) calculated were 359.73 and 636.62 respectively. Production records interpretation showed decrease in reservoirs' productivity as a result of decline in the natural pressure of the reservoirs. From analysis results, it was deducted that the thin beds positively impact the reservoir petrophysics and the calculated recoverable reserve also impact reserve.

This work showed that the studied fields have large amount of natural gas volume and that R1 is the major producing reservoir. The method used may also be applied in Nigerian fields towards enhancing hydrocarbon recovery.
Acknowledgement

My profound gratitude goes to Almighty God who is the source of my existence. Basically, I appreciate the tireless effort and support of my supervisor, Dr. O. A. Ehinola. My profound gratitude goes to the Vice Chancellor of this great institution, Prof. O.A. Bamiro for writing a personal congratulatory and encouraging letter to me based on my NAPE UAP-Grant Award on this research.

I extend my appreciation to the head of the department and Deputy Vice Chancellor, Prof. A.I. Olayinka. I also appreciate Drs. M. I. Akagbobi, A.F. Abimbola, O. A. Okunlola, M.E. Nton, M.N. Tijani, A.S. Olatunji, A.T. Bolarinwa, and A.M. Adeleye for their teachings. I also appreciate the departmental librarian, Mrs. Helen Ezekwem and all the non-academic staff in the department of geology especially the Cartographer, Mr. Edgal Augustus. I will never forget the helping hand extended to me by Drs. G.O. Adeyemi and O.A. Boboye during the course of this research.

Specifically, I appreciate Wasiu B. Odufisan (Exxonmobil) for his encouragement and support in making sure that I am a better person today. You are one in a million in encouraging people to be what they actually dreamt to be. You made the data set for the research work available to me. I will also not forget the great people that signed my reference forms during my admission processes; Gilbert E. Odior (Deep Geoscience Manager, Exxonmobil), Edwin E. Nwaeri (Manager Operation Geoscience Technical (OTG East), Exxonmobil) and Prof. A.G. Onwuemesi (My Bsc. Project Supervisor and Head of Department, Nnamdi Azikiwe University Awka) I say thank you to you all. I also appreciate Dr. Mustafa Jubril (Manager OTG West, Exxonmobil) for his support and encouragement.

My greatest gratitude goes to the Bureau of Economic Geology, University of
Texas at Austin (UTA), Gas Research Institute (GRI) and the U.S. Department of Energy (DOE) for release of these data sets to postgraduate students from all parts of the globe to study.

I extend my gratitude to the Nigerian Association of Petroleum Explorationists (NAPE) for the grant awarded to me for this research. *I highly appreciate Aret Adam's Fellowship for the celebration and the overall postgraduate award given to me as their number one selected candidate.*

I highly appreciate all the members of my lovely family (My wonderful parents and ever loving brothers and sisters) for their ceaseless prayers, care and support through this Msc. Programme. Obinna, Chisom, Chijioke, Uchenna, Chukwubinyelum and Ify, God bless you all.

This work would not have been a success without the unrelenting support and effort of my husband, Engr. Tony Chukwudi Nneji. Sweetheart I do appreciate you. I also appreciate my lovely found friends Ajala, Temitope Mayowa (Geophysicist) Yemisi Abiodun and Vivian Chidimma Ezeanyika for their love and care throughout this programme. I also appreciate people like Nneli Williams Onyeka and the entire 2007/2008 Msc. Research Students especially those in Petroleum Option for your advice and help in one way or the other during this research.

I do appreciate Poopola Bukola (Analytical Chemist) and Nike Ogbigbesan (Medical Educationist). I am indebted to all members of my fellowship, Winners Postgraduate Campus Fellowship U.I Chapter, for their ceaseless prayers unto me towards a brighter destiny. I do appreciate Christine Murangwa my Rwanda friend (UNESCO-IHE).
Dedication

This research work is highly dedicated to the Almighty God. Thank You for the knowledge and wisdom given to me during the course of this research. Thank You for the journey so far. I love You.

I do dedicate this to the blessed memory of my lovely eldest brother, Evangelist Chukwuemeka Evaristus Ubaka, who slept in the Lord on Wednesday night (10.30pm) 19th August, 2009. Also to the blessed memory of my dearest and ever caring daddy, Joseph Nwabuze Orakwue, who departed on Thursday morning [10.00am] 11th March, 2010. May your gentle souls rest in peace, miss you so much. Daddy you would have waited to give me a warm embrace at the completion of my master’s degree, but it is well.
Table of Contents

Chapter ONE
1.0 Introduction
1.1 General Statement
1.2 Study Location
1.3 Statement of the problem
1.4 Objectives of study
1.5 Physiographic Setting
1.5.1 Topography
1.5.2 Climate
1.6 Scope and Methodology
1.7 Previous work

CHAPTER TWO
2.0 Regional Geology of Texas
2.1 Generalized Geology of Texas
2.1.1 Geology of West Texas
2.2 Geologic history of West Texas
2.3 Regional Geology of Delaware Basin
2.3.1 General Statement
2.3.2 Geology of Delaware Basin
2.4 Geologic Setting of West Waha and Worsham-Bayer Fields
2.4.1 Ellenburger Group Reservoir Geology
2.4.1.1 Ellenburger Group Depositional Facies Assemblages
2.4.1.2 Karst Facies of Ellenburger Group
2.4.2 Fusselman Formation Reservoir Geology
2.4.3 Thirtyone Formation Reservoir Geology
2.4.4 Undifferentiated Mississippian Reservoir Geology
CHAPTER THREE

3.0 Methodology
3.1 Data Volumes
3.2 Use of the Data
3.3 Summary of the Data
3.4 Place of Data Interpretation
3.5 Procedure for Interpretation
3.5.1 Well log correlation
3.5.2 Calculation of Petrophysical parameters
3.5.3 Reservoir attributes
3.6 Seismic-to-well ties
3.7 3D Seismic Interpretation
3.7.1 Mapping of reservoirs
3.8 Structural Framework/Fault Network Mapping
3.9 Time-Depth Structure maps (Depth Conversion)
3.10 Recoverable reserve estimation/Volumetric
3.11 Production record interpretation
3.12 Limitation of study

CHAPTER FOUR

4.0 Results and Discussion
4.1 Well log correlation
4.1.1 Petrophysical analysis
4.1.2 Reservoir Attribute Analysis Result
4.2 Seismic-to-well ties using check survey
4.3 Structural Framework/Fault Network Mapping
4.4 3-D Seismic Mapping
4.5 Time-Depth Structure Maps
4.6 Recoverable reserve estimation/volumetric result
4.7 Production record interpretation

CHAPTER FIVE

5.0 Conclusion and Recommendation

References

FIGURES

1.1 Location map for the area of data collection
1.2 Map showing the location of Delaware Basin
1.3 Texas Elevation Map
1.4 Drainage map of Texas
1.5 Locations of West Waha and Worsham-Bayer Fields (Hardage et al, 1998)
2.1 Geologic map of Texas (Bureau of Economic Geology, the University of Texas, 1992)
2.2 Schematic Basin evolution of the Delaware Basin
2.3 Structures of Delaware Basin
2.4 Stratigraphic column of Delaware basin showing the geologic setting of West Waha and Worsham-Bayer Fields
2.5 (A) Cross section of facies assemblages of Ellenburger Group showing both onlap and truncation in a northwesterly direction. (B) Schematic cross section illustrating the major facies assemblages (from Kerans, 1990).
2.6 Three major Ellenburger Group reservoir types in West Texas (from Holtz and Kerans, 1992).
2.7 Thickness map showing distribution of dolomite and limestone in the Fusselman Formation in West Texas (from Ruppel and Holtz, 1994).
2.8 Block diagrams illustrating the distribution of facies (a) During Early Devonian relative sea-level rise, deep-water siliceous sediments dominated the area and platform carbonates were restricted to the north. (b) Highstand progradation of
the carbonate platform (from Ruppel and Holtz, 1994).

2.9 Map illustrating the location of the Thirtyone Deep-Water Chert play. (Ruppel and Holtz, 1994).

2.10 Isopach and facies map of Mississippian rocks of West Texas. (after Wright, 1979).

3.1 Isopach map of Ellenburger Group showing the gradual thinning of the reservoir according to the base map towards North-West of Texas Arch.

3.2 Log example showing, SP, CAL, ILD, ILM and MSFL curve signatures.

3.3 Porosity Log type showing DT log signature.

3.4 Log examples, showing PHID, NPHI and RHOB curve signatures.

3.5 Log examples, Showing Log signatures for LLD, LLS and LL8.

4.1 Basemap showing well locations.

4.2 Type log (well no. 29, located in fig. 4.1) for the area of the 3-D seismic volume.

4.3 Correlated Stratigraphic Xsection of the four reservoirs [R1, R2, R3 and R4].

4.4 Showing the R1, R2, R3 and R4 reservoir tops in seismic-to-well ties using well 37 velocity check shot survey.

4.5 Interpreted 3-D section showing mapped R1, R2, R3 and R4 reservoirs, structural and stratigraphic features, seismic stratigraphic reflection configuration and termination.

4.6 Arrows indicating reservoir compartmentalization in 3-D Seismic section.

4.7 3-D Seismic section at Inline and Xline showing Well 41 sited away from a structural feature and a proposed well.

4.8 Ellenburger Group [R1] reservoir Depth Structure Map.

4.9 Fusselman Formation [R2] reservoir Depth Structure Map.

4.12 Date versus Gas per Month Mscf of Ellenburger at well 47
4.13 Date versus Gas per Month Mscf of Ellenburger at well 29
4.14 Date versus Gas Per Month Mscf of Fusselman at Well 47
4.15 Date versus Gas Per Month Mscf of Thirtyone [R3] Reservoir at Well 47
4.16 Date versus Cumulative Gas MMscf of Ellenburger reservoir at Well 47
4.17 Date versus Cumulative Gas MMscf of Fusselman Formation reservoir at Well 47
4.18 Date versus Cumulative Gas MMscf of Thirtyone Formation reservoir at Well 47

TABLES
3.1 Available well log types from the well log data set
3.2 Values for Sonic Matrix (DTMa) of Wyllie and Raymer-Hunt-Gardener
 Equations for different formations (Formations & values of interest painted
 yellow) [Krygowski and Asquith, 2004].
3.3 Density Matrix values (RhoMa). (The formations and values of interest dotted
 red). (Krygowski and Asquith, 2004).
3.4 Matrix values for Limestones and Dolomites for Porosity calculation using
 Neutron log (indicated with red dot) (Krygowski and Asquith, 2004).
4.1 Petrophysical Analysis Result
4.2 Reservoir Attribute Analysis Result for R1 (Ellenburger Group) reservoir
4.3 Reservoir Attribute Analysis Result for R2 (Fusselman Formation) reservoir
4.4 Reservoir Attribute Analysis Result for R3 (Thirtyone Formation) reservoir
4.5 Reservoir Attribute Analysis Result for R4 (Undifferentiated
 Mississippian Limestone) reservoir.
4.6 Recoverable reserve calculation result
4.7 Wells and Reservoirs with their corresponding Cumulative Gas (Bscf) [Extracted
 from the production record].
CHAPTER ONE

INTRODUCTION

1.1 General Statement

Reservoir characterization and subsurface geological maps is perhaps the most important vehicle used to explore for undiscovered hydrocarbons and to develop proven hydrocarbon reserves. However, the subject of reservoir characterization and subsurface mapping is probably the least discussed, yet most important, aspect of petroleum exploration and development. As a field is developed from its initial discovery, a large volume of well logs, seismic, and production data are obtained. With the integration of these data, the accuracy of the subsurface interpretation is improved through time (Tearpock and Biscake, 2003).

A decade ago, approximately 800 trillion cubic feet (Tcf) of natural gas existed or was estimated to exist in conventional reservoirs in United States, yet only 538 Tcf of this gas is economically recoverable at prices of less than $3 per thousand cubic feet (Mcf) in 1987 dollars (Finley et al., 1988). More recently, considering only the largest 580 gas reservoirs on Texas State Lands, only half of an original 20 Tcf of natural gas in place has been recovered (Holtz and Garrett, 1997). One of the most promising new technologies for imaging gas reservoirs for reserve-growth studies is three-dimensional (3-D) seismic reflection data. The recent rapid increase in the use of 3-D seismic data in the oil and gas industry has vastly improved the level of detailed resolution of subsurface reservoir parameters such as petrophysical features (porosity, permeability, water saturation and so on), structural features interpretation (faults and folds), stratigraphic features (erosion and truncation features, karsting etc), and in some cases, even direct hydrocarbon